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Motivation and Main Problem

● Problem Solved: They present Randomized_x0002_to-Canonical Adaptation 
Networks (RCANs), a novel approach to crossing the visual reality gap that 
uses no real_x0002_world data.
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Motivation and Main Problem
Why important?
● Real world robotics data is costly.  Real-robot data collection expensive and cumbersome.
● large amounts of labelled data can be produced by the power of simulation but the difficulty of transferring 

simulated experience into the real world comes (reality gap)

○ domain adapatation methods require a large amount of unlabelled real world data(easier than 
labelled data, but still costly)

○ domain randomization methods: 

■ directly used on the input makes the task harder than necessary for modeling the arbitrary 
changes in the visual domain and decipher the dynamics of the task at the same time.

■  some popular RL algorithms(DDPG and A3C) can be destabilized by this transfer method.
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RCAN:

● They learn to adapt from one heavily randomized scene to an equivalent non-randomized, 
canonical version. 

● Then they train a robotic grasping algorithm in a pre-defined canonical version of our 
simulator

● They use RCAN model to convert the real_x0002_world images to the canonical domain 
where their grasping algorithm(QT-Opt, a recent reinforcement learning algorithm) was 
trained on.

● Advantages:

○ no need for any real-world data 

○ gives an interpretable intermediate output

○ solves the stability issue as it is trained in a supervised manner and preprocesses the input
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Relate Work - Robotic Grasping

● based on visual and geometric similarity: assumes same/similar objects
● data-driven methods (hand-labeled, grasp positions, self-supervision, predicting grasp 

outcomes) are important
● state-of-the-art grasping system

○ open-loop (choose grasping locations at fist and execute motion)

○ closed-loop(continuously run grasp prediction during motion)

● Why vision-based robotic closed-loop grasping?

○ Robotic grasping is exceptionally challenging since a grasping system must successfully pick up previously 
unseen objects(cannot just memorize) with internal understanding of geometry and physics.

○ This presents a particularly difficult challenge for simulation-to-real-world transfer.
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Relate Work - Randomization

● Random textures, lighting, and camera position, etc 
● Apply domain randomization on physical properties of the simulator to aid 

transferability

○ Mild randomization consists of varying tray tex_x0002_ture, object texture and color, robot 
arm color, lighting di_x0002_rection and brightness, and a background image consisting of 6 
different images from the view of the real-world cam_x0002_era.

○ Medium randomization adds a diverse mix of back_x0002_ground images to the floor

○ Heavy randomization uses the same scheme used to train RCAN
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Relate Work - Visual domain adaptation
● training samples from a source domain(simulation) to a target domain(real-world)
● prior methods

○ feature-level adaptation: domain-invariant features are learned between source and target 
domains

○ pixel_level adaptation:  focuses on re-stylizing images from the source domain to make them 
look like images from the target domain

○ image-to-image translation deals with the easier task of learning such a re-stylization from 
matching pairs of examples from both domains. 

● Their technique can be seen as an image-to-image translation model that transforms 
randomized renderings from their simulator to their equivalent nonrandomized, 
canonical ones.

● orthogonal to GraspGAN by Bousmalis et al
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Method

● 3 domains: the randomized simulation domain, the canonical simulation 
domain, and the real-world domain.

● D is a dataset of N samples, where each sample is a tuple containing an RGB 
image xs 

 from the randomization(source) domain, an RGB image xc from the 
canonical(target) domain(with scene configuration), a segmentation mask mc , 
and a depth image dc .

● Both the segmentation mask and depth mask are only used as auxiliary tasks 
during the training of the generator.
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RCAN Data Generation
● Simulated environments: Bullet physics engine, default renderer. 
a Kuka IIWA robot, a tray, an over-the-shoulder RGB camera aimed at the tray, and a set of graspable 
objects (a combination of 1,000 procedurally generated objects and 51,300 realistic objects from 55 
categories obtained from the ShapeNet repository)

● Pairs of observations: 
scene in canonical version(b) 
same scene with randomization applied(a)

● Canonical Environment
uniform colors to the background, tray and arm
leave textures for objects to preserve identity

Future work: opens up the potential for instance-specific grasping
fixed light source 
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RCAN Training Method

●  Consists of image-conditioned generative adversarial network (cGAN)
● The RCAN generator function G(x) → {xa, ma, da}, maps an image x from 

any domain to an adapted image xa, segmentation mask ma, and depth image 
da, such that they appear to belong to the canonical domain.

● G(xs): randomized sim images            G(xr): real world images
● Visual equality between the generated xa and target xc through a loss function leqx 

(mean pairwise squared error (MPSE))
● Semantic equality between mc and ma through a function leqm (L2)
● Depth equality between dc and da through a function leqd (L2)
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RCAN Training Method

● Leq loss:  

● Gx, Gm, and Gd denote the image, mask, and depth element of the generator output 
respectively. 

● λx, λm and λd represent the respective weightings.
● LGAN loss:
● D(x) is a discriminator that outputs the likelihood that a given image x is from the 

canonical domain.
● Gx denotes the image element of the generator output
● Final objective: 
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RCAN Training Method
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Q-function Targets via Optimization(QT-Opt)

● QT-Opt is a state-of-the_x0002_art method for vision base grasping, which 
made it an ideal choice as a baseline for a direct comparison.

● QT-Opt is an off-policy, continuous_x0002_action generalization of Q-learning, 
where the goal is to learn a parametrized Q-function

● Much like other works in RL, stability was improved by the introduction of two 
target networks.

● Different action selection: QT-Opt instead evaluates the argmax via a 
stochastic optimization algorithm over a; in this case, the cross-entropy 
method
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QT-Opt training in simulation

● At the begining of each episode, ramdomly sampled divider position + 5 
randomly selected objects

● At each timestep, freeze the scene and apply a new arbitrary randomization 
to capture the randomized observation. Reset to and capture an canonical 
version observation with same transformation to match semantics

● Observations consist of RGB images, depth, and segmentation masks
● Categories: labeling each pixel with graspable objects, tray, tray divider, 

robot arm, and background
● Randomization: mild randomization, medium randomization, heavy 

randomization(textures, lighting, arm and tray)
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Real World Grasping with QT-Opt

● Original QT-Opt(Kalashnikov et al.) st = (xt, gapt,t, gheight,t)
● RCAN QT-Opt  st = ([G(xt) + xt], gapt,t, gheight,t)
[G(xt) + xt] represents the concatenation of source image xt and the resulting generated xa 
with generator G.

● Original QT-Opt trained with 580,000 off-policy real-world grasps, and jointly 
finetune with an additional 28,000/5,000 on-policy grasps.

● RCAN QT-Opt trained on 28,000/5,000 real on-policy data and generated on-
policy simulation data

15

Original QT-Opt vs. RCAN QT-Opt



CS391R: Robot Learning (Fall 2021)

Experimental Setup

● 102 grasps attempts on 5 to 6 unseen test objects
● Failure case: no object has been grasped after 20 times of grasp attempts.
● Hypotheses

○ Can they train an agent to grasp arbitrary unseen objects without having seen any real-world 
images?

○ How does QT-Opt perform with standard domain ran_x0002_domization, and can our method 
perform better than this?

○ Does the addition of real-world on-policy training of our method lead to higher grasping 
performance while still drastically reducing the amount of real-world data required?
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Experimental Results
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Experimental Results

18



CS391R: Robot Learning (Fall 2021)

Experimental Results

● Set up to see how performance varies as they progress from 0 to 5,000 on-
policy grasps for both RCAN and Mild Randomization at every 1,000 grasps 
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Failure cases

● Compared to original QT-Opts which got 96% success with 28,000 online 
grasps, RCAN lost the regrasping ability, the policy to detect when there is 
no object in the closed gripper, and decide to re-open it in an attempt to try 
and re-grasp

● Guess: the concatenation of source image to generated adapted image 
affected.

● Hypothesis: as the number of joint finetuning grasps increase, the network 
would eventually learn to solely rely on the source (real-world) image
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Future work

● direct domain randomization on other fields

● other use of interpretable output for sim-to-real transfer.

● fusing ideas from other transfer methods that require some real-world data
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Summary

 Problem: RCAN, a sim-to-real method that learns to translate randomized simulation images into a 

canonical representation, which in turn allows for real-world images to also be translated to this 

canonical representation. 

 Why important? Real world data costly

 Key limitation of prior work? 

Domain adaptation - still costly; Domain randomization - complicate and destablize

 What did they demonstrate by this insight?

Double the performance than direct domain randomization on start-of-the-art QT-Opt algorithm.

Increase the performance to 91% using 5000 grasps and RCAN than QT-Opt when trained with 580,000 

grasps
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Any Questions?
Thank you
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